The constant known as e

What is ee?

To grasp the concept of ee, imagine this scenario: You've invested 100100 units into a financial scheme promising a 100100% return over a year. While such a scheme is definitely a scam in real life, let's overlook that for this explanation.

A year later, your investment doubles to 200200 units, marking a growth factor of 22. But what happens if you opt for a semester-long investment instead, achieving a 5050% return, then reinvest the total (now 150150 units) for another semester? The growth factor of your investment becomes:

(1,5)2=2,25(1,5)^2 = 2,25

Notice how it increases. Let's break down the investment further into quarters, each with a 25% return. The growth now becomes to:

(1,25)4=2,441(1,25)^4 = 2,441

What if the investment were even more frequent, say monthly? This is the total growth factor at the end of the year:

(1+112)12=2,613(1 + \frac{1}{12})^{12} = 2,613

The formula for calculating the growth factor is thus:

(1+1n)n(1 + \frac{1}{n})^n

Does this mean the growth factor increases infinitely? Not quite. Eventually, it approaches a constant value, known as ee. Hence, ee is defined by the term:

limn(1+1n)n\lim\limits_{n \to \infty} (1 + \frac{1}{n})^n

Calculating e


Back

But, how do we calculate this? Well, this is where binomial expansion comes to place. Remember the formula for binomial expansion:

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

Where (nk)\binom{n}{k} is defined as:

n!(k!)(nk)!\frac{n!}{(k!)(n-k)!}

Now let's plug our definition for ee to the binomial expansion:

e=limnk=0n(n!(k!)(nk)!)1nk(1n)k=k=0nlimnn!(k!)(nk)!1nk=k=0nlimn1k!n!(nk)(nk)!\begin{split} e &= \lim\limits_{n \to \infty} \sum_{k=0}^{n} (\frac{n!}{(k!)(n-k)!}) 1^{n-k} (\frac{1}{n})^k \\ &= \sum_{k=0}^{n} \lim\limits_{n \to \infty} \frac{n!}{(k!)(n-k)!} \cdot \frac{1}{n^k}\\ &= \sum_{k=0}^{n} \lim\limits_{n \to \infty} \frac{1}{k!} \cdot \frac{n!}{(n^k)(n-k)!} \end{split}

Now, we can focus on this part of the equation:

n!(nk)(nk)!=n!(nk)!1nk\frac{n!}{(n^k)(n-k)!} = \frac{n!}{(n-k)!} \cdot \frac{1}{n^k}

The fraction n!(nk)!\frac{n!}{(n-k)!} means (n)(n1)(n2)(nk+1)(n)(n-1)(n-2)\cdots(n-k+1). Since nkn-k becomes closer to nn as nn reaches infinity, then:

limnn!(nk)!1nk=limnnnn1nnk+1n=111=1\begin{split} \lim\limits_{n \to \infty} \frac{n!}{(n-k)!} \cdot \frac{1}{n^k} &= \lim\limits_{n \to \infty} \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-k+1}{n} \\ &= 1 \cdot 1 \cdots 1 \\ &= 1 \end{split}

From here we can incorporate it to our binomial expansion:

e=k=0nlimnn!(nk)(nk)!1k!e=k=01k!\begin{split} e &= \sum_{k=0}^{n} \lim\limits_{n \to \infty} \frac{n!}{(n^k)(n-k)!} \cdot \frac{1}{k!} \\ e &= \sum_{k=0}^{\infty} \frac{1}{k!} \end{split}

Approximating exe^x


Back

Getting the value of ee using binomial expansion is basically implementing a specific case of exe^x where x=1x=1

Let us try to get the approximation of exe^x then, by expanding limn(1+1n)nx\lim\limits_{n \to \infty} (1 + \frac{1}{n})^{nx}:

ex=limnk=0n(nxk)1nxk(1n)k=limnk=0n(nx!(k!)(nxk)!)(1n)k=k=0nlimnnx!(k!)(nxk)!1nk=k=0nlimn1k!nx!(nk)(nxk)!\begin{split} e^x &= \lim\limits_{n \to \infty} \sum_{k=0}^{n} \binom{nx}{k} 1^{nx-k}(\frac{1}{n})^k \\ &= \lim\limits_{n \to \infty} \sum_{k=0}^{n} (\frac{nx!}{(k!)(nx-k)!})(\frac{1}{n})^k \\ &= \sum_{k=0}^{n} \lim\limits_{n \to \infty} \frac{nx!}{(k!)(nx-k)!} \cdot \frac{1}{n^k}\\ &= \sum_{k=0}^{n} \lim\limits_{n \to \infty} \frac{1}{k!} \cdot \frac{nx!}{(n^k)(nx-k)!} \end{split}

Just like with n!(nk)!\frac{n!}{(n-k)!} we can expand nx!(nxk)!\frac{nx!}{(nx-k)!} as nn approaches infinity, nxknx-k becomes closer to nxnx:

limnnx!(nxk)!1nk=limnnxnnx1nnxk+1n=xxx=xk\begin{split} \lim\limits_{n \to \infty} \frac{nx!}{(nx-k)!} \cdot \frac{1}{n^k} &= \lim\limits_{n \to \infty} \frac{nx}{n} \cdot \frac{nx-1}{n} \cdots \frac{nx-k+1}{n} \\ &= x \cdot x \cdots x \\ &= x^k \end{split}

Plugging it back to the sum, we get:

ex=k=0nlimnnx!(nk)(nxk)!1k!=k=0xkk!\begin{split} e^x &= \sum_{k=0}^{n} \lim\limits_{n \to \infty} \frac{nx!}{(n^k)(nx-k)!} \cdot \frac{1}{k!} \\ &= \sum_{k=0}^{\infty} \frac{x^k}{k!} \end{split}

To derive exe^x we can do the following:

ex=k=0xkk!=x00!+k=1xkk!=1+k=1xkk!dexdx=0+k=1kxk1k!=k=1xk1(k1)!=k=0xkk!=ex\begin{split} e^x &= \sum_{k=0}^{\infty} \frac{x^k}{k!}\\ &= \frac{x^0}{0!} + \sum_{k=1}^{\infty} \frac{x^k}{k!}\\ &= 1 + \sum_{k=1}^{\infty} \frac{x^k}{k!}\\ \frac{de^x}{dx} &= 0 + \sum_{k=1}^{\infty} \frac{k \cdot x^{k-1}}{k!} \\ &= \sum_{k=1}^{\infty} \frac{x^{k-1}}{(k-1)!}\\ &= \sum_{k=0}^{\infty} \frac{x^{k}}{k!}\\ &= e^x \end{split}

Understanding Euler's Identity


Back

TODO